Smarter than Genius? Human Evaluation of Music Recommender Systems

نویسندگان

  • Luke Barrington
  • Reid Oda
  • Gert R. G. Lanckriet
چکیده

Genius is a popular commercial music recommender system that is based on collaborative filtering of huge amounts of user data. To understand the aspects of music similarity that collaborative filtering can capture, we compare Genius to two canonical music recommender systems: one based purely on artist similarity, the other purely on similarity of acoustic content. We evaluate this comparison with a user study of 185 subjects. Overall, Genius produces the best recommendations. We demonstrate that collaborative filtering can actually capture similarities between the acoustic content of songs. However, when evaluators can see the names of the recommended songs and artists, we find that artist similarity can account for the performance of Genius. A system that combines these musical cues could generate music recommendations that are as good as Genius, even when collaborative filtering data is unavailable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smarter than Genius? Human Evaluation of Music Recommender

In this paper, we seek to gain a deeper understanding of the function and performance of the Genius recommender system by comparing it to two simple, canonical systems: one based purely on metadata, the other purely on acoustic content. We evaluate this comparison using a large user study of 185 subjects and attempt also to discover the factors that are most important for building a playlist. W...

متن کامل

Evaluation of recommender systems: A multi-criteria decision making approach

The evaluation and selection of recommender systems is a difficult decision making process. This difficulty is partially due to the large diversity of published evaluation criteria in addition to lack of standardized methods of evaluation. As such, a systematic methodology is needed that explicitly considers multiple, possibly conflicting metrics and assists decision makers to evaluate and find...

متن کامل

IMPROVE THE RECOMMENDER SYSTEM USING SEMANTIC WEB

To buy his/her necessities such as books, movies, CD, music, etc., one always trusts others’ oral and written consultations and offers and include them in his/her decisions. Nowadays, regarding the progress of technologies and development of e-business in websites, a new age of digital life has been commenced with the Recommender systems. The most important objectives of these systems include a...

متن کامل

Ensemble-based Top-k Recommender System Considering Incomplete Data

Recommender systems have been widely used in e-commerce applications. They are a subclass of information filtering system, used to either predict whether a user will prefer an item (prediction problem) or identify a set of k items that will be user-interest (Top-k recommendation problem). Demanding sufficient ratings to make robust predictions and suggesting qualified recommendations are two si...

متن کامل

A New WordNet Enriched Content-Collaborative Recommender System

The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009